
Extending traffic simulation based on cellular automata: from particles to autonomous agents

Ana L. C. Bazzan, Maicon de B. do Amarante, Guilherme G. Azzi,Alexander J. Benavides, Luciana S. Buriol,
Leonardo Moura, Marcus P. Ritt, Tiago Sommer

Instituto de Informática, UFRGS
C.P. 15064, 91501-970, P.Alegre, RS, Brazil

Email: {bazzan,mbamarante,ggazzi,ajbenavides,buriol,lmoura,mpritt,tsommer}@inf.ufrgs.br

ABSTRACT

Cellular automata models for modeling of traffic move-
ment assume that vehicles are particles without route.
However, if one is interested in analysing microscopic
properties, it is necessary to assign a route to each
trip. This paper discusses the latest developments in the
ITSUMO traffic simulator, which aim at modeling more
sophisticated driver behaviors such as en-route decision-
making. This was tested in two scenarios, one being a
real-world traffic network. We make an extensive discus-
sion about the effects of the use of various routing algo-
rithms as well as demand and capacity, control measures,
network topologies, and re-planning strategies.

1 Introduction

The traditional cellular automata (CA) model for mi-
croscopic modeling of traffic movement introduced by
Nagel and Schreckenberg (1992), as well as its exten-
sions, consider that the traffic demand (vehicles) are par-
ticles without route. Rather, vehicles are routed at each
intersection with a probability to turn left, right, or con-
tinue in the same direction. For the purpose of gener-
ating a macroscopic picture of the traffic situation, this
is a fair assumption. However, in reality, for each vehi-
cle and trip, a route must be assigned if one is interested
in analysingmicroscopicproperties. For instance, the
CA does not provide support for modeling more sophisti-
cated driver behaviors such as route planning or en-route
decision, which is appealing to AI practitioners.

In the present paper we aim at discussing the effects of
the introduction of routing mechanisms in the CA model
of traffic simulation that underlies the ITSUMO (Intel-
ligent Transportation System for Urban Mobility) sim-
ulator (Silva et al. (2006); Bazzan et al. (2010)). One
motivation behind ITSUMO is to allow the use of AI and
autonomous agents techniques to address the increasing
complexity of problems related to urban mobility. For
instance, one may simply plug a model for a class of
drivers. This approach is in contrast with current mod-
els, which are purely reactive and ignore drivers’ men-
tal states (informational and motivational data). Also, it
is possible to plug reinforcement learning based control
for traffic lights. Hence, ITSUMO deals with short term
control of traffic lights and withen routere-planning by
drivers; thus it permits the study of co-effects of both de-

mand and supply in a more natural way. Since the con-
trol modules were already discussed in previous papers,
here we focus on the discussion about the latest additions,
which are related to the demand and routing mechanisms
and algorithms.

This paper is organized as follows. In the next section
we discuss related works. Given that there is an extensive
list of references that could be quoted here, thus mak-
ing this article too long, we focus on some background
ideas and on microscopic simulators that are agent-based.
Section 3 gives an overview of the ITSUMO simulator
and focus on the recent extensions. To illustrate our ap-
proach we use two scenarios that are described in sec-
tion 4. These are then presented and discussed in Section
5. We give some concluding remarks and outline the fu-
ture work in Section 6.

2 Related Work

In the last years there has been some proposals for sim-
ulation platforms that are flexible enough to test ITS
(Intelligent Transportation Systems) approaches. Some
(e.g. Paramics, AISUM, VISIM, EMME2) are based on
classical models of simulation and are commercial tools.
With the appearance of a new simulation paradigm –
agent-based simulation – it is now possible that traffic
experts and other users develop their own applications.
This has been achieved at some extent (e.g. Dresner
and Stone (2004); Rossetti and Liu (2005); van Katwijk
et al. (2005); Balmer et al. (2008); Vasirani and Os-
sowski (2009)). However, these tools are goal-directed
meaning that they were built for (more or less) specific
purposes. One of the notable exceptions is MATSim
(www.matsim.org). However, MATSim’s simulation
paradigm is queue-based, traffic signals are very simple,
and drivers are not fully autonomous (e.g. during re-
planning). Moreover, most of these works do not con-
sider both control and assignment of demand as a whole
process (except the latter but there the integration only
refers to their specific market-based approach).

Our aim with ITSUMO is to fill this gap with a non-
commercial code that is truly agent-based (thus micro-
scopic). An earlier version of ITSUMO was described
in Silva et al. (2006). The current version was extended
Bazzan et al. (2010) to allow modeling of both control
measures and drivers reaction to them.



3 Approach and Description of the Simulator

The approach we follow is completely agent-based. Ac-
tors in the urban environment (drivers, traffic lights, and
autonomous vehicles) are modeled as agents. ITSUMO
is composed by five modules: database, the simulation
kernel, control, demand (assignment and drivers’ defini-
tion), and the output module (visualization and statistics).
Next, we briefly present the existing modules, focussing
on the demand part.

3.1 Basic and Control Modules

Simulation kernel: In contrast to macroscopic models
of traffic simulation (which are mainly concerned with
the movement of platoons of vehicles, focusing on the
aggregate level), in the agent-based paradigm each ob-
ject can be described as detailed as desired, thus permit-
ting a more realistic modeling of drivers’ behavior for
instance. In the agent-based approach both travel and/or
route choices may be considered, which is a key issue
in simulating traffic since those choices are becoming in-
creasingly more complex.

In order to achieve the necessary simplicity and
performance, ITSUMO uses the Nagel–Schreckenberg
cellular–automata (CA) model Nagel and Schreckenberg
(1992) for traffic movement (aka. Na-Sch model). In
short, each road is divided in cells with a fixed length.
This allows the representation of a road as an array where
vehicles occupy discrete positions.

Database:The information regarding the topology of
the traffic network is stored in an XML file. The database
module creates, updates, and stores the static and the dy-
namic objects to be used in the simulation, both related
to the infrastructure (supply) and to the demand. Regard-
ing the former, the main attributes are: Cartesian coordi-
nates of intersections, streets characteristics (number of
lanes, etc.); and signal plans (set of lane-to-laneset al-
lowed movements). Regarding the demand, the dataset
stores: insertion rate of vehicles at given nodes of the
network; origin and destination of drivers, etc. Topologi-
cal data (i.e. map attributes) can be either entered manu-
ally, or be imported directly from the Open Street Map
(OSM, www.openstreetmap.org). The database
also stores other objects such as sources, sinks, turning
probabilities, etc. Due to lack of space we refer the reader
to Silva et al. (2006).

Control: In ITSUMO the control of traffic lights is im-
plemented and executed via traffic light agents. A com-
munication is established between the agents and the ker-
nel using sockets. This tells the kernel to run the action
(signal plan) selected by the traffic light agent. These
control actions can be implemented by the user as de-
sired. Several were already tested by us, especially based
on reinforcement learning, as in Bazzan et al. (2009).

Output: Sensors and detectors are used to collect in-
formation that is displayed during the simulation, such
as the lane occupation rate, the average vehicle speed in

a street, travel time, etc.
Users can visualize the simulation either in a macro-

scopic or in microscopic level (individual vehicles).

3.2 Demand Assignment and Routing

Demands are normally represented by an OD (origin-
destination) matrix that results from some survey or other
kind of measurement of demand. For each trip, a ve-
hicle is generated and a route is assigned. This is in
sharp contrast with the basic Na-Sch model where ve-
hicles are treated as individual particleswithout a route.
This means that particles are not actually autonomous
agents since they do not pick their own routes.

ITSUMO allows the following forms of demand han-
dling: the creation of vehicles as Na-Sch particles; man-
ual definition of a handful of routes; automatic generation
of routes using various algorithms such as Dijkstra, A*,
ARA*, anytime and dynamic shortest path algorithms.
Next we give a brief overview on the less known of these
algorithms for shortest route computation.

Both Dijkstra and A* algorithms are satisfactory in
static problems. This is not the case when routes must
be computed for every driver taking into account the ac-
tual cost of each link in the network. Given that these
links depict frequent changes in such costs, efficient algo-
rithms must be used. Moreover, in very large networks,
there is no time to find the best route. In this case, any-
time algorithms are helpful because a route can be com-
puted, which is the best possible solution given a time
bound. Anytime algorithms also make sense because it
is usually the case that the costs associated with each link
will change making expensive computations quickly out-
of-date. In such cases it is interesting to compute a partial
route that is both fast and inexpensive.

Likhachev (2005) presents three variations of the A*
algorithm: an anytime variation, a dynamic one, and a
variation that is both dynamic and anytime. Anytime
Repairing A* (ARA*) is the anytime variation. It in-
troduces a weight to control the lower bounds of A*
and produces a solution with a controlled sub-optimality
bound. It finds a sub-optimal solution quickly with a
loose weighted bound in the first search. Later, when
more time is available, it tightens the bound and reuses
previous search efforts until it produces an optimal so-
lution. Lifelong Planning A* (LPA*) is the dynamic
variation. The initial LPA* search is the same than A*
search. When there are changes in link costs, LPA* up-
dates them and executes the search again. Subsequent
LPA* searches reuse previous valid search efforts to find
an updated optimal solution. Anytime Dynamic A* or
Anytime D* (AD*) is both anytime and dynamic. It com-
bines the variable weighted lower bound (ARA* prop-
erty) and the update of changed costs (LPA* property).
The initial solution can be improved after the trip of any
driver has started, because there were changes in links’
costs, or because the initial solution was not the best pos-
sible.



No matter the algorithm used, routing can be done ei-
ther in a centralized way (e.g. routes are computed by a
central entity and are assigned to vehicles), or in a decen-
tralized way. Thecentralizedcase is trivial and is per-
formed as in commercial simulators: given an OD ma-
trix, an algorithm computes routes for each driver, sim-
ulates the journeys, and performs further re-assignments
until an equilibrium is found. In thedecentralizedcase,
the driver computes its own route based on a given strat-
egy and on local knowledge. Therefore we refer to this
aslocal planning.

Besides, routes can be computed either in a static or in
a dynamic way meaning that either the length of a link is
used as cost, or this cost is computed based on the cur-
rent state (occupation) of the link. For the latter, a cost
function was devised, which considers occupation of the
links as a kind of inflated length. This is based on the
maximum possible speed given a particular occupation
of the link. The maximum speedV a vehicle may reach
in a link i is given byV = min{vmax, (N

i
c −N i)/N i},

wherevmax is a parameter of the Na-Sch CA model (ba-
sically it is the maximum permitted speed of the vehi-
cle, which can only be achieved under free flow);N i is
the current number of vehicles in the link; andN i

c is the
number of cells in the link (considering all lanes), i.e. the
maximum number of vehicles that fit in it. The inflated
lengthLi of link i is then computed asLi = li × vmax

V

whereli is the length ofi.
To illustrate the idea, let us imagine thatN i = 100

andvmax = 3. With less than 25 vehicles ini, all of
them may travel atvmax, hence the link weight isLi =
li = 100 (no penalty). Otherwise the link is penalized
exponentially (e.g. forN i = 90 and henceLi = 100 ×
3/0.11 = 2700).

3.3 Drivers and En-Route Re-planning

One of the features of an autonomous driver is its ability
to re-plan during the trip when facing congestion. En-
route re-planning can be executed using one of the algo-
rithms mentioned in Section 3.2. In all cases, a driver will
compute a new route from the point where s/he starts to
re-plan, up to the destination. Henceforth when we refer
to re-planning we meanen-routeplanning. In this case,
the current traffic status of the known links are used. For
unknown links, the length is used instead.

So far we have implemented two strategies for trigger-
ing re-planning. One is calledintersection re-planning
(IR) while the second isdelay re-planning(DR). IR
means that drivers may re-plan at every intersection. DR
is based on a driver’s current delay. In this case, when a
driver arrives at a linkei ∈ Pj , wherePj is the initially
computed route of vehiclej, s/he evaluates how delayed
s/he is when compared to the expected time. If the cur-
rent time step isτ times higher than the expected time
step, than the driver re-plans the route. In order to
use DR, the driver uses its perception. As mentioned be-
fore, we assume that a reasonable perception is the one

that the driver can have locally. Thus, drivers’ perception
was limited to two links ahead (from its current location).
For links farther than this, links’ costs are assumed to be
their respective lengths.

3.4 Remarks about the Approach

In this section we have outlined the main features of IT-
SUMO, now extended to include various routing algo-
rithms to tackle the demand part. We remark that both the
control and the demand models are fully agent-based. Al-
though the user may or may not use the totality of the data
and knowledge (thus simulating a centralized approach),
it is also possible to let driver agents (or, for the sake of
control, traffic signal agents) have access to only local
knowledge (thus simulating a distributed process where
agents just have local data gathered by means of sensors).
Of course in the case of drivers, it is a reasonable assump-
tion that nowadays the full map of the traffic network is
easily accessible (e.g. if we assume that GPS devices are
wide-spread).

In order to illustrate the effects of the various design
possibilities, the next section discusses two scenarios and
the respective results. Both scenarios are thought as typ-
ical commuting scenarios where drivers select a route
from an origin to a destination. Both depart from the
simple binary choice scenario frequently seen in the lit-
erature (e.g. Klügl and Bazzan (2004)). Therefore they
deal with route choice in a network with a high set of
possible routes, as it is the case in real-world scenarios.

The first scenario is a nearly regular 6x6 grid.In this
grid all links have the same capacity, except for those
belonging to the main avenue where there is a higher ca-
pacity. This however does not change significantly the
regular characteristic of the grid. We decided to use this
grid in order to compare the results with previous papers
using this scenario, in which we have not used ITSUMO
in its full.

For instance, in Bazzan et al. (2009) this scenario was
used to illustrate the integration of ITSUMO and MAT-
Sim. In this case, the demand part was handled by MAT-
Sim, using a queue-based simulation model. Therefore
it was not completely microscopic. A virtual queue was
used where the actual position of the vehicle in the link
does not matter. In opposition to this, here use use cellu-
lar automata. Another difference between MATSim and
the current version of ITSUMO is that in ITSUMO the
re-planning is completely at local level i.e. the driver it-
self decides to re-plan or not. MATSim used a scheme
that simulates a centralized mechanism determining that
a given percentage of the drivers re-plan and select those
which will do so. This is done as such because the learn-
ing mechanisms implemented in MATSim (e.g. genetic
algorithms) need full knowledge that is not necessarily
known to the drivers.

The second scenario is closer to real-world urban net-
works. It is taken from the city of Porto Alegre (POA) in
Brazil, where we use the main arterials and avenues. By



using this second scenario we are able to show that real
world networks are different from regular grids.

4 Scenarios

4.1 Grid 6×6

In the 6x6 grid all 60 links that are associated with the 36
nodes are one-way and drivers can turn in each crossing.
Although it is apparently simple, this kind of scenario is
realistic and, from the point of view of route choice and
equilibrium computation, it is also a very complex one as
the number of possible routes between two locations is
high.

Due to the fact that each cell measures 5 meters and
each link is 300m long, the grid supports nominally 4200
vehicles. Most links have a single lane, that is, may con-
tain 60 vehicles. Five links, however, have three lanes
and a capacity of 180 vehicles.

For every driver agent, its origin and destination are
either randomly selected or based on an existing (non-
uniform) OD matrix. In the former case, we call this an
uniform demand. For the 6x6 grid, an uniform demand is
created by assigning each node being origin with proba-
bility of 1/36; and similarly regarding destinations.

Regarding non-uniform demands, in this paper we use
the following (already used by us in previous papers as
mentioned). On average, 60% of the drivers have the
same destination. Other links have, each, 1.7% proba-
bility of being a destination. Origins are nearly equally
distributed in the grid, with three exceptions (three “main
residential areas”). The remaining links have each a
probability of 1.5%.

Besides these two types of demand, we have also per-
formed simulations using the Na-Sch driver. These at-
tempts to emulate uniform demand: there are sources on
every node, all producing vehicle with the same proba-
bility. Sinks are also located on each of the 36 nodes,
and remove vehicles with a probability of 1/36.

No matter the kind of demand used, the actual trips af-
ter the routes are determined, are combined with a simple
kind of control, namely by means of traffic lights running
signal plans with fixed time, or greedy strategies. Each
node runs a signal plan, with a cycle length of 60 seconds
and a split of 50% of green time for each traffic direction.
The actions of the traffic light agents are: to run the de-
fault signal (in the fixed mode), or to modify the base
plan in a greedy way allowing more green time for the
more congested approaching lanes.

4.2 Real-World Network

Although the 6x6 grid is a realistic scenario from the
point of view of routing (as the number of possible routes
is large), it is a small scenario given that nominally 4200
vehicles can occupy the network. Larger scenarios were
already tested in ITSUMO as in Bazzan et al. (2010),
where the downtown part of the urban network of POA

Figure 1: 15 Main Origins and Destinations in the POA
network

was used. In that case the network accommodates 8000
vehicles. In the present paper we aimed at extending
these figures considerably thus we are using an extended
portion of the same city, depicted in Fig. 1. We have
opted to have only the main network of arterials. We de-
cided to consider only arterials because we want to focus
on the effect of routing and re-planning. Therefore we
need to consider a large portion of the city (otherwise
routing makes little sense). The more links used, the
more drivers that have to be simulated, or we risk hav-
ing low occupancy. This of course has an impact in the
simulation time. Thus we opt to have less links (but the
busy ones). In any case, the network already considers a
high number of nodes and links.

As in the 6x6 grid, for this second network we discuss
cases with and without the use of traffic lights. When
these are present, the signal plans were generated auto-
matically using cycle length of 60 seconds, with uniform
green time for all phases.

Overall, the network comprises 61 nodes (46 having
traffic lights), 38 sections totalizing 76K meters, and we
have varied the number of vehicles as much as possible.
We remark that one section has several lanes (typically 3
in each direction) and since each cell has 5 meters, the
network holds up to approximately 100K vehicles.

Similarly to the grid 6x6, for every driver agent, its ori-
gin and destination are either randomly selected or based
on a non-uniform OD matrix. The uniform demand was
generated by assigning the probability of1/61 = 1.64%
to every node (both for origin and destination). Regard-
ing non-uniform demands, the origins and destinations
are concentrated in 15 main nodes that are depicted in
Fig. 1. Due to lack of space we do not show the OD
matrix but note that for instance almost 10% of the trips
originate in a given node. This is in sharp contrast with
the 1.64% in the uniform demand.

5 Results

In this section we present the main results regarding both
networks, and discuss them (from Section 5.2 on) regard-
ing effects of different types of demand, use of traffic
lights, routing algorithm, etc. We start with the 6x6 grid,



discussing the baseline case i.e. the basic Na-Sch model,
where vehicles are treated as individual particles with-
out a route. For our purposes in this paper, this has little
usage because these particles cannot be routed. There-
fore we just show briefly what happens if we do allow
only this kind of vehicles to populate the network (Sec-
tion 5.1). After we discuss the effects of algorithms and
control strategies in both networks, as well as perform a
comparison between them.

5.1 Baseline: Drivers as Particles

The main metric that is used in both the 6x6 and the big-
ger network is the average travel time of all routed vehi-
cles. Unfortunately this metric is not adequate in the case
of Na-Sch particles because these have no route and, at
each junction, there is a probability that an existing par-
ticle is consumed by a sink. Thus, for the Na-Sch parti-
cles we use a different metric, namely the time necessary
for the last driver to quit the simulation. This gives us
a rough idea of how long it takes for a given number of
drivers to travel before they are all removed. Na-Sch par-
ticles are generated, at each of the 36 nodes for a fixed
time period, with a given insertion rate. For instance,
if it is 0.2, one can expect the insertion of about 1000
vehicles into the network if we let the source active for
1000/(0.2× 36) ≈ 139 time steps.

With this rate, it takes 1030 time steps for the last of
the 1000 vehicles to quit the simulation. This time then
increases slightly up to around 1400 time steps when the
rate is1.0.

Contrarily to this situation, as discussed in the next
sections, travel time for drivers with routes increase much
more abruptly. This means that particles have a stable
behavior and in fact this behavior is much more related
to how the sink removes them than to how they select a
route. This is of course not realistic as it is not what is
observed in the real-world.

5.2 Simulating Autonomous Agents

One first remark that has to be done relates to particular
characteristics of the Na-Sch model used for the move-
ment of vehicles. Because a gap must be considered be-
tween the vehicles, one generally cannot achieve more
than roughly 50% occupancy of the network (meaning
that for each vehicle there is one empty cell ahead). This
is especially the case when no traffic lights are used.
When they are present, stopped vehicles of course may
eventually fill all possible cells in a link. This has an ef-
fect on the maximum number of vehicles in the network
at any given time, as shown below. In general, given the
nominal capacities of the 6x6 and POA networks (4200
and 100K), we can expect to fit around 2K and 50K ve-
hicles respectively.

The second remark relates to the fact that we have not
implemented any deadlock solver because this would im-
ply ad-hoc and arbitrary decisions (such as “jumping” ve-

A
A A

A

A

0 500 1000 1500 2000 2500
100

200

300

400

500

600

700

A

A
A

A

0 500 1000 1500 2000
100

200

300

400

500

600

700

A
A

A
A

A

0 500 1000 1500 2000 2500
100

200

300

400

500

600

A

A
A

A

0 500 1000 1500 2000
100

200

300

400

500

600

Figure 2: Average travel times in grid 6x6, for differ-
ent number of drivers. Top left: uniform demand, no
lights; Top right: uniform demand, with lights; Bottom
left: non-uniform demand, no lights; Bottom right: non-
uniform demand, with lights.�: Dijkstra; ∗: A*; A:
ARA*; +: re-planning

hicles out of a link when in a deadlock situation). There-
fore, when we start increasing the number of vehicles in
the simulation, at some point deadlock situations may
happen as vehicles block each others and none is able
to move further. This is especially the case in the 6x6
grid which has only one lane in most of the links. In the
POA network most of the links have 3 or more lanes but
deadlocks occur there as well because in some parts the
level of congestion is severe.

Therefore, in the experiments discussed next, we start
increasing the number of vehicles up to the point when
deadlocks are noticed. In some cases the transition to
deadlock regimes is nearly chaotic as for instance when
2K drivers are simulated in the 6x6 network, under uni-
form demand.

We now turn to the results using the routing mecha-
nisms. The experiments were run in Intel(R) Core(TM)
i7 CPU 860 / 2.80GHz with 8 GB of RAM. They run
from 0.06 seconds (500 drivers, network 6x6) to 30 hours
(50K, POA). As mentioned, the main metric here is the
average travel time over all drivers that are created in the
simulation. Travel times are given in simulation steps.
In the cellular automata one time step is the time neces-
sary for moving from one cell to another. For instance
if a vehicle has speed 3, this means it moves 3 cells per
time step. Given that the cell has 5 meters, this means 15
m/step. Thus, a travel time of, say, 1000 means a traveled
distance of 15 km (with speed 3) or 5 km (with speed 1).

In the experiments, every driver may decide to re-plan.
Here we just report results yielded by the IR strategy (see
Section 3.3).

Figures 2 and 3 show travel times for various cases,
for both networks. In both, the two plots at the top refer



A A A
A A

A

4000 6000 8000 10000 12000

400

600

800

1000

A
A

A

4000 6000 8000 10000

400

600

800

1000

A
A

10000 20000 30000 4000050000 60000

1000

2000

3000

4000

5000

10000 20000 30000 4000050000 60000

1000

2000

3000

4000

5000

Figure 3: Average travel times in the POA network; Plots
as in Fig. 2;�: Dijkstra; ∗: A*; A: ARA*; ×: greedy;
+: re-planning

to demands uniformly distributed, whereas the two bot-
tom plots refer to non-uniform OD matrices; left plots
are with the activation of traffic lights, whereas the right
ones refer to scenarios without traffic lights. Although
we do not show error bars, we remark that the standard
deviation of the averages we report here are mostly be-
low 1%. We discuss the main effects of the changes of
the various dimensions in the next sections.

5.3 Use of Different Routing Algorithms

As expected, algorithms belonging to the same family
(e.g. Dijkstra and A*) yield equivalent travel times, with
some remarkable exceptions. In general this can be ex-
plained by A* and Dijkstra selecting different kinds of
routes in a regular grid. A* selects a more direct route
trying to stick to a straight one. Dijkstra selects one
among many routes that have the same optimal cost; usu-
ally this route is the same for different drivers. In partic-
ular, as seen in Fig. 2, left plots (no traffic lights), there
is a significant difference in travel time between Dijkstra
and A* for 2K drivers. This is explained by the fact that
this is the transition to a deadlock situation in a regular
grid. This transition is, as mentioned before, chaotic in
this particular case probably due to the fact that there are
in fact not many alternatives for drivers and hence dead-
locks occur more frequently.

Apart from this, from figures 2 and 3, it is possible
to see that the A* and Dijkstra yield approximately the
same travel times. Also as expected, in general, the run-
ning times of A* are lower.

As for the ARA*, this was executed four times, tight-
ening the weight from 2.5 to 1.0 each 0.5 to emulate
a constraint regarding planning time. ARA* had a poor
performance in network 6x6 because it selects the same
routes for all the vehicles, similarly to Dijkstra, as men-
tioned. This is because there are many optimal routes

with the same costs in a regular grid.

5.4 Uniform versus Non-Uniform Demand

Comparing top and bottom plots in Fig. 2, one notices
that there is not a significant difference between the plots.
This is so because nodes are regularly distributed. This
has the consequence that the uniform demand generates
traffic that is indeed nearly uniformly distributed. The
OD matrix for this scenario, as mentioned before, fore-
sees three major origins and one major destination but
apart from this the rest is again uniformly distributed.
This explains the relatively small difference between the
two kinds of demands.

In the POA (non-regular) network (Fig. 3) however,
many of the 61 nodes are concentrated in the center of
the city. Having more nodes in this area makes it much
more likely to originate and attract trips when the trips
are uniformly distributed by node. This has a certain im-
pact on travel times, but an even stronger impact in the
appearance of deadlocks. In fact, looking at Fig. 3 one
see that it was not possible to simulated more than 12K
for the case of uniform demand due to existence of dead-
locks. When the demand is non-uniform, we are able to
simulate more than 50K drivers without noticing dead-
locks.

The average travel time is higher when we compare
the same number of drivers in the top and bottom plots
of Fig. 3. Take for instance 8K drivers. When the trips
are uniformly distributed, the average travel time is as
low as 437 (using A*). This changes to around 700 (first
point in Fig. 3, bottom left) when trips are according to
the non-uniform OD matrix.

In summary, there are many differences between the
two kinds of demands. In regular networks deadlocks
start to occur for roughly the same number of drivers, in-
dependent of type of demand. This is seen in the four
plots of Fig. 2 where we were able to simulate, depend-
ing on the case, up to 1.5K to 2.5K drivers. In non-regular
networks, having regularly distributed trips severely de-
creases the number of drivers that can use the network
because the area with most nodes (generally the cen-
ter of the city) originates and attracts far too many trips
and deadlocks occur there even for a small number of
drivers.

5.5 Effect of Traffic Lights

In order to compare the cases with and without use of
traffic lights one should look respectively at the left and
right sides of figures 2 and 3. In the case with traffic
lights, most plots refer to fixed time scheme i.e. cycles
are 60 time steps and do not change. Greedy traffic lights
did not provide significant reduction in travel times.

The main conclusion is of course that travel times in-
crease due to the delay imposed by the red lights. The
magnitude of such delay is different for both networks.
In the 6x6 the increase is around 50% (for instance 100



to 150 steps for 500 drivers). There are some differences
related to the type of demand with a tendency of less fluc-
tuation when the demand is non-uniform.

In the POA network the variation in travel time in-
creases much more and ranges from 50% to 90% when
the demand is uniform (comparing both top plots); when
the demand is non-uniform (both bottom plots), it ranges
from 100% (20K vehicles) to 170% (40K vehicles).

5.6 Effect of Re-planning

In this section we discuss the effect of using the IR strat-
egy for re-planning. The algorithms used each time a
driver re-plans were A* and LPA*. Due to lack of space
we report only the former but note that there were no sig-
nificant differences.

In general one can affirm that re-planning decreases
the travel time. However this decrease varies from case to
case. Re-planning has a complex effect since it is highly
coupled with other factors such as number of drivers,
type of demand, regularity of the network, and whether
or not traffic lights are employed.

Regarding the number of drivers, as expected, re-
planning pays off when the network is close to the sat-
uration level. This can be seen in Fig. 2: in almost all
plots (a remarkable exception is top left that corresponds
to uniform demand), travel times under re-planning are
at least as good as when no re-planning is used. In
particular, re-planning yields significantly lower travel
times when there are more than 1500 drivers (for exam-
ple, compare+ and∗ for more than 1500 drivers). This
general picture also applies to the POA network (Fig. 3):
in almost all cases, and especially for higher number of
drivers, replanning yields lower travel times.

It is also remarkable that in some cases re-planning
was able to eliminate the deadlock (see both plots at bot-
tom of Fig. 2 and both at top of Fig. 3). This corroborates
the intuition that re-planning only pays off when the net-
work is somehow full. Also, re-planning achieves better
results when the demand is non-uniform, the network is
non-regular, and when traffic lights are active. The fact
that these are exactly the conditions re-planning is used in
the real-world work as a kind of validation of the agent-
based approach.

6 Conclusion and Future Work

In this paper we have presented the latest extensions in
the ITSUMO simulator, which aim at provide the users
with the tools to design intelligent drivers that can plan
and re-plan their routes. To illustrate this we have dis-
cussed design issues in two scenarios, stressing differ-
ences and similarities found, as well as the effects of
type of demand, type of network, number of drivers, ef-
ficiency of the routing algorithms, etc.

We are currently working on the experimentation of
the variant in which drivers are able to use their individ-
ual knowledge (gathered during commuting time) in the

selection of route.

REFERENCES

Balmer, M., Meister, K., Rieser, M., Nagel, K., and Axhausen,
K. W. (2008). Agent-based simulation of travel demand:
Structure and computational performance of MATSim-T. In
2nd TRB Conference on Innovations in Travel Modeling,
Portland, June 2008.

Bazzan, A. L. C., de Brito do Amarante, M., Sommer, T., and
Benavides, A. J. (2010). ITSUMO: an agent-based simulator
for ITS applications. In Rossetti, R., Liu, H., and Tang, S.,
editors,Proc. of the 4th Workshop on Artificial Transporta-
tion Systems and Simulation. IEEE.

Bazzan, A. L. C., Nagel, K., and Klügl, F. (2009). Integrating
MATSim and ITSUMO for daily replanning under conges-
tion. In Proceedings of the 35th Latin-American Informatics
Conference, CLEI, Pelotas, Brazil.

Dresner, K. and Stone, P. (2004). Multiagent traffic manage-
ment: A reservation-based intersection control mechanism.
In Jennings, N., Sierra, C., Sonenberg, L., and Tambe, M.,
editors,Proc. of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 530–537,
New York, USA. New York, IEEE Computer Society.

Klügl, F. and Bazzan, A. L. C. (2004). Route decision be-
haviour in a commuting scenario.Journal of Artificial So-
cieties and Social Simulation, 7(1).

Likhachev, M. (2005).Search-based Planning for Large Dy-
namic Environments. PhD thesis, Carnegie Mellon Univer-
sity.

Nagel, K. and Schreckenberg, M. (1992). A cellular automaton
model for freeway traffic.Journal de Physique I, 2:2221.

Rossetti, R. and Liu, R. (2005). A dynamic network simulation
model based on multi-agent systems. In Klügl, F., Bazzan,
A. L. C., and Ossowski, S., editors,Applications of Agent
Technology in Traffic and Transportation, Whitestein Series
in Software Agent Technologies and Autonomic Computing,
pages 181–192. Birkhäuser, Basel.

Silva, B. C. d., Junges, R., Oliveira, D., and Bazzan, A. L. C.
(2006). ITSUMO: an intelligent transportation system for
urban mobility. In Nakashima, H., Wellman, M. P., Weiss,
G., and Stone, P., editors,Proceedings of the 5th Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems, AAMAS, pages 1471–1472. ACM Press.

van Katwijk, R., van Koningsbruggen, P., De Schutter, B., and
Hellendoorn, J. (2005). A test bed for multi-agent control
systems in road traffic management. In Klügl, F., Bazzan,
A. L. C., and Ossowski, S., editors,Applications of Agent
Technology in Traffic and Transportation, Whitestein Series
in Software Agent Technologies and Autonomic Computing,
pages 113–131. Birkhäuser, Basel.

Vasirani, M. and Ossowski, S. (2009). Exploring the poten-
tial of multiagent learning for autonomous intersection con-
trol. In Bazzan, A. L. C. and Klügl, F., editors,Multi-Agent
Systems for Traffic and Transportation, pages 280–290. IGI
Global, Hershey, PA.


